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ABSTRACT 

The Safeguards Envelope is a strategy to determine a set of specific operating 
parameters within which nuclear facilities may operate to maximize safeguards 
effectiveness without sacrificing safety or plant efficiency.  This paper details the 
additions to the advanced operating techniques that will be applied to real plant process 
monitoring (PM) data from the Idaho Chemical Processing Plant (ICPP). Research this 
year focused on combining disparate pieces of data together to maximize operating 
time with minimal downtime due to safeguards. A Chi-Square and Croiser's cumulative 
sum were both included as part of the new analysis. Because of a major issue with the 
original data, the implementation of the two new tests did not add to the existing set of 
tests, though limited one-variable optimization made a small increase in detection 
probability. Additional analysis was performed to determine if prior analysis would have 
caused a major security or safety operating envelope issue. It was determined that a 
safety issue would have resulted from the prior research, but that the security may have 
been increased under certain conditions.  

 

 
FOREWORD 

 
The work described herein supported by the U.S. Department of Energy under DOE 
Idaho Operations Office Contract DE-AC07-05ID14517. 

 

 
ACKNOWLEDGEMENTS 

 
Mr. Duc Cao of Wisconsin University has been invaluable in helping code many of the 
methods to be demonstrated. Also to my reviewers, and Robert Bean of Idaho National 
Laboratory, I offer my thanks.  



 

 vi

CONTENTS 

ABSTRACT .................................................................................................................................................. v 

FOREWORD ................................................................................................................................................ v 

ACKNOWLEDGEMENTS .......................................................................................................................... v 

ACRONYMS .............................................................................................................................................. vii 
 

INTRODUCTION ........................................................................................................................................ 1 

THEORY OF SAFEGUARDS ENVELOPE ............................................................................................... 3 
Definition of Safeguards ..................................................................................................................... 3 
Definition of the Safeguards Envelope ............................................................................................... 3 

PROBLEM STATEMENT ........................................................................................................................... 3 
ICPP Facility ...................................................................................................................................... 3 
Diversion Detection ............................................................................................................................ 4 

STATISTICAL ANALYSIS ........................................................................................................................ 4 
Chi-Square Test .................................................................................................................................. 4 
Croisier’s CUSUM ............................................................................................................................. 5 

SIGNIFICANT ISSUES WITH BASE DATA ............................................................................................ 6 
Results of the Limited Optimization .................................................................................................. 8 

EXPLORATION OF THE SAFEGUARDS ENVELOPE PARAMETER SPACE .................................... 9 

QUALITATIVE ANALYSIS OF SAFETY AND SECURITY FOR THE SAFEGUARDS 
ENVELOPE OPERATION .............................................................................................................. 11 

REMAINING CHALLENGES .................................................................................................................. 13 
Time-correlation Correction on Existing Data ................................................................................. 13 
Determining Equipment Failure Versus Diversion .......................................................................... 13 

APPENDIX A ............................................................................................................................................. 15 
Diversions of Significant Concern ................................................................................................... 15 

APPENDIX B ............................................................................................................................................. 17 
Analysis of Safeguards Envelope ..................................................................................................... 17 

REFERENCES ........................................................................................................................................... 22 
 



 

 vii

ACRONYMS 
 

AAKR  Auto associative kernel regression 
DOE  Department of Energy 
FAR  False Alarm Rate 
IAEA  International Atomic Energy Agency 
INL  Idaho National Laboratory 
ICPP  Idaho Chemical Processing Plant 
MAUA  Multi-Attribute Utility Analysis 
MBP  material balance period 
MC&A  material control and accountability 
MUF  material unaccounted for 
PM  process monitoring 
PND  probability of nondetection 
PP   physical protection 
SNM  special nuclear material 
SQ  significant quantity 

 



 

 viii

 



 

 1

Safeguards Envelope Progress FY10 
 

INTRODUCTION 
 

Modern nuclear systems will include process monitoring as part of their design to 
enhance their safeguards for both domestic and international safeguards approaches. 
These new requirements for enhanced safeguards must not incur significant costs, 
however, or nuclear facilities will be prohibitively expensive.  
 
Though it is an obvious facet of design to be considered, safeguards have not 
historically been integrated into the design process, or even integrated fully into the 
operation of facilities.  This has resulted in external, regulatory requirements adding 
synthetic costs to nuclear facilities because the industry has not embraced a systems 
engineering approach to safeguards.  While the design phase systems engineering 
approach to safeguards would be Safeguards-by-Design, the operating-phase systems 
engineering approach is the creation of a Safeguards Envelope.  The Safeguards 
Envelope program is currently working on a project to increase the security within 
nuclear facilities, using the Idaho Chemical Processing Plant (ICPP) as an example 
case.  
 
This research has focused on maximizing an example material balance period (MBP) 
for special nuclear material (SNM). Two factors determine the optimum MBP.  The false 
alarm rate (FAR) is the rate or percent of alarms which falsely declare a diversion 
scenario is taking place.  The probability of nondetection (PND) is the probability of 
failing to detect a diversion.  For a given set of parameters, decreasing the FAR usually 
requires relaxing the operational constraints and thresholds, but at the same time can 
increase the PND as it raises the possibility of hiding an abnormality.  Thus, optimizing 
the MBP is also a problem of optimizing the FAR and PND. 
 
Different statistical tests, however, provide different optimal FAR and PND.  In this 
study, kernel regression analysis is applied to a declared ‘event’ from ICPP PM data to 
create a best fit curve.  A trial data set is simulated from the ICPP data consisting of a 
‘normal set’ and a ‘diversion set.’  Residual analysis and cumulative sum techniques are 
applied to determine optimum bounds for acceptable operating conditions based upon 
resultant FAR, PND, and MBP. 
 
In prior work, several authors have found ways of increasing the probability of detection 
under different assumptions, with secondary papers refuting these claims due to the 
realism effects of safety, security, and plant requirements. 1 2 3 4 5 6 7 8 Significant 
increases in detection had been accomplished in FY10 by the inclusion of new tests and 
methods of handling the data in the data sparse environment. However, the increases 
were ultimately flawed due to assumptions about the underlying data, and so only a 
small increase in the ability to detect material was accomplished. The underlying 
additional tests are available, but they remain untested.  
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Additionally, this year demonstrates the magnitude of the optimization problem. 
Similarly to the difficulty in analyzing nuclear fuel, optimization for reprocessing facilities 
through process monitoring and accountancy activities is extremely complex and large. 
Several methods for optimization were investigated, but all approaches remained too 
computationally expensive.  
 
In addition, significant research this year was dedicated to evaluating the prior 
safeguards envelope operation compromised the safety or security envelopes on the 
example ICPP facility. Non-PRA safety analysis has shown an unfortunate result: 
because of issues in the original plant design, one of the requested changes to 
operation could have fatigued a major pipe and caused a significant leak. Other safety 
concerns, including criticality and increased dose, were found to be insignificant. 
Security concerns were also found to be insignificant, but the authors have not found an 
adequate method of assessing the vulnerability with existing common techniques.  
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THEORY OF SAFEGUARDS ENVELOPE 
 

Definition of Safeguards 
 

Safeguards are put into place to protect nuclear material from proliferation or other non-
declared purposes, and are vital for securing the future of nuclear energy domestically 
and globally.  This principle defines the need for fields such as nuclear nonproliferation, 
which guards against the theft or diversion of SNM.  SNM is tracked through a nuclear 
facility, and that facility is responsible for ensuring that no more than one significant 
quantity (SQ) is unaccounted for in a given timeframe, ranging form one year to as little 
as 30 days.  Depending upon the size of the plant, this can be an enormous and 
seemingly impossible task. 
 

Definition of the Safeguards Envelope 
 

Safeguards envelopes are operational spaces designed similarly to the idea of a safety 
envelope1.  For years, the concept of an area of operation that does not needlessly 
endanger the public, personnel, or equipment of a nuclear facility has been a major 
component of nuclear facility design.  This safety envelope methodology can just as 
easily be applied to safeguards, such that an operating space can be constructed that 
does not needlessly risk proliferation activities, while also not overburdening the 
operator with regulatory costs.  The goal is simply to define a set of operational 
parameters which increase the probability of detecting a diversion of nuclear material1 

and apply them to operating and new nuclear facilities to make safeguards a point of 
optimization for operations instead of a fixed, ad hoc procedure.  The most effective way 
to develop these parameters is to use real nuclear plant process monitoring data and 
perform statistical analyses and modeling methods. 

 
 

PROBLEM STATEMENT 
 

ICPP Facility 
 

During its 43 years of operation, process monitoring was of great importance in the day 
to day operations of the Idaho Chemical Processing Plant.  When the state-of-the art 
level/density scanner was introduced as part of the process monitoring system, the 
accuracy of the data improved drastically, allowing a greater confidence in nuclear 
materials control and accountability (MC&A).  With this more reliable data, statistical 
analysis methods can be more effectively utilized to detect diversions of special nuclear 
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material (SNM), and determine optimum operating parameters for both materials 
accountability and operator impact. 

 

Diversion Detection 
 

Process monitoring techniques and analysis methods are a primary focus in attempts to 
increase the ability to detect a diversion.  The goal is to be able to detect as small of a 
diversion as possible without raising the false alarm rate (FAR) or the probability of 
nondetection (PND) above a reasonable level.  If a FAR is too high it is not cost 
effective, for every alarm must be investigated which would be intrusive on the plant 
operator’s other duties.  With a high PND the issues are obvious; it is unacceptable to 
rely on a system for nuclear security when it fails to detect diversions.  By utilizing 
advanced statistical analysis techniques, one can determine a balance of optimum 
working parameters and also obtain a better material balance period (MBP).  In this 
study, MBP is used as the figure of merit because it can easily accept the FAR and 
PND into a single metric.  This single figure of merit allows for a single optimization 
point rather than two, but these are both available for more detailed or plant specific 
studies. 
 

STATISTICAL ANALYSIS 
 
In this study, kernel regression was used to create a best fit function to the data 
received from ICPP.  Kernel regression is a state estimation technique which is 
considered a nonparametric technique, for unlike linear regression, it does not assume 
a fundamental distribution in the data. The proposed algorithm compares historical and 
trial data sets and tests the ability to detect a diversion by looking at two items: degree 
of residual randomness and deviation from the mean.  To determine the effectiveness of 
the statistical tests, we perform a Markov Monte Carlo simulation and run 500,000+ 
trials as a simple method for finding out the resultant FAR and PND values. A 
discussion of how this analysis is performed in detail is given in APPENDIX B. A more 
thorough description is provided in the prior reports in this series. The updates to this 
analysis are presented below.  
 

Chi-Square Test 
 

A Chi-Square test has been used to replace the original Z testing of the 
cumulative sums to identify if the deviation from the “true” values has the appropriate 
variance. An unusually high variance could represent diversion, mechanical fatigue, or 
sensor failure. While the typical Chi-Square test is used to evaluate the performance of 
a system, the application of this test to the residuals can provide a second measure to 
determine if the residuals are away from normal.  
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Equation 1 shows a standard Chi-Square test. In this equation, X2 is our test 
statistic, Oi are the individual observations (residuals), and Ei are the expected values.  
 

          (1) 
  
The numerator term appears to be a sum of the residuals, and the denominator term 
becomes the variance of the historical set. Similar to a student’s-t test, very little is 
assumed about the data that is available and as a result, the Chi-Square test has 
differing thresholds for evidence based on the number of degrees of freedom. The 
degrees of freedom are one less than the number of observations in the set. 
Safeguards Envelope operation, therefore, not only increases the evidence set that is 
available for a statistical determination, but allows for higher thresholds to minimize the 
FAR. 
 
This test has been integrated with the student’s-t as part of the standard suite for 
detecting diversions. Specifically, this test provides a mechanism for combining all 
residuals positively to address the diversion scenario of removal of material during a 
statistically high event.a  
 
The issue with adding a Chi-Square test is the increased FAR that is to be expected 
from adding additional tests. As discussed in the FY08 report, a union or intersection 
model can be created with the Chi-Square and cumulative sum test. Some diversion 
types would not typically be detected with the cumulative sum test, and so only a union 
model can be applied. This has an unfortunate disadvantage: the FAR must increase 
with the linearly with the FAR for each test, but the detection probability for some 
diversions is only derived from one test.  
 

Croisier’s CUSUM 
 
Croisier’s CUSUM is a cumulative sum method which updates the prior sum before 
moving to the next iteration. The update to the prior sum determines if the new sum will 
be moved towards zero (as given in Eqs. 2-7), or if the system will be reset to zero. This 
resetting to zero is expected to increase the PND but decrease the FAR and so may be 
preferred in applications where many measurements are taken in multiple locations. 
The reduction to FAR, which increases linearly to the number of measurements in the 
union model, is a crucial requirement for MBP and acceptance by operators.  
 

     (2) 

       (3) 
                                                      
a This diversion is outlined in APPENDIX A . 
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        (4) 

        (5) 

        (6)  
    

        (7) 
 
 
In Eqs. 2-7, Ct is the existing and updating cumulative sum, St-1 is the prior sum, the 
new St is the new sum added onto this group, k is a scalar (in the direction of S for the 
multivariate case), is a scaling parameter, and Yt is the new test statistic.  
 
The procedure for this analysis is very similar to other cumulative sum tests. The 
updated cumulative sum is used as a test statistic to determine if the root mean error is 
beyond a certain threshold with a given probability. Unique to this test is the parameter 

.  is a scaling parameter for the impact of the most recent sum. In a students-t test, 
this factor is zero. However, if this parameter is nonzero,  reduces the FAR but 
increases the PND because it adds an additional threshold for divergence on a given 
measurement before it is added to the cumulative sum, as expected by a system which 
has thousands of measurements.  
 
One of the issues associated with Croisier’s cumulative sum is that a control parameter, 

, is required as well as the standard threshold. Similarly to the Chi-Square test, this 
test has the potential to increase the optimization, but also synthetically increases the 
parameter space. In the event that Croiser’s CUSUM’s  variable is highly sensitive, 
this test must be discarded. Unfortunately, this year an appropriate value for k was 
unable to be determined since implementation, and a basic student’s-t statistic has 
been uniformly superior over the variables tested.  
 
 

SIGNIFICANT ISSUES WITH BASE DATA 
 
Original results for this year exceeded expectations of sufficient magnitude to require a 
second analysis. The FAR and PND were both significantly lower than 0.1%, allowing 
for several months MBP. This error took significant time to track down because the code 
associated with these tests had not been changed before running the analysis. It was 
believed that a heretofore unknown error within the code had produced a major bug in 
the reporting statistics.  
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Several techniques for debugging were applied, as well as external review by 
researchers not associated with this project. Finally as the code was determined to be 
accurate, the new test variables, a combination of level, density, and temperature, were 
checked to ensure no major data flaws.  
 
An analysis for skewness on the density and level measurements provided no valuable 
results, even at the p=0.01 level.  While at a glance the data is correct, a very careful 
examination shows that the density measurements begin later and end sooner than the 
level measurements. As a result, the error (which is most significant at the beginning 
and ending of the transient) was drastically misestimated, suggesting that process 
monitoring could perform much better than would be achievable in actual operations. 
This overlap is demonstrated in figure 1..  
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Figure 1: The data does not match in timestamp correctly. 
 
 
The reason for the drastic increase in material balance period with the safeguards 
envelope operation was because of the synthetic increase in the number of points 
created points within the area in which the error was driven to zero. This compounded 
the underestimation of the FAR and PND and led to the drastic overestimation of the 
MBP. When these points were removed, the PND and FAR approached values more in 
line with that would be expected, given the assumptions presented in the analysis.  
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Results of the Limited Optimization 
 

Initial results showed extreme improvement over FY08 and FY09 activities, but these 
results had to be ignored because of the data issues given in the prior paragraph. 
Unfortunately, a significant amount of time was allocated to combinational multivariate 
approaches in FY10, and so only the optimization approaches of early FY10 are still 
valid. Future research in this area will allow for an analysis of the time-lag and an 
estimate of its error for the remaining FY10 research. The optimization also was only 
performed on one variable (since this was intended to be applied to a single combined 
variable. The limited improvements did reduce the base PND while the FAR remained 
close to 1%.  
 

TABLE 1 
Tabulated Results Including Previous Work. 

 
Data Type Z-test Kernel Reg. CUMSUM FY FAR PND 
One-Var. YES  YES  YES FY09 1.15% 12.39%
One-Var. YES YES YES FY10 1.03% 10.10%
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EXPLORATION OF THE SAFEGUARDS ENVELOPE 
PARAMETER SPACE 
 
Exploration of the Parameter Space for the Safeguards Envelope:  
 
Any safeguards envelope that is created should maximize the benefits to operations, 
safeguards, and security. Complexity in nuclear systems prevents an easy optimization, 
however. In a similar manner to the adjustments to load-cells required for relative 
humidity and air density, precise determination of the exact optimal parameters will 
require extensive start-up testing.  
 
When simulations are available and these parameters are being estimated through 
models, it becomes much easier to explore the parameter space and determine 
potential optimal operations. Unfortunately, the size and versatility of bulk processing 
nuclear facilities and the flexible requirements of detection and false alarm for each 
subsystem create an exceptionally large number of variables. An example set of 
variables this analysis uses is provided:  
 

L-Norm Level 
Threshold for Student's-t test 
Threshold for Chi-Square test 

Operational changes-slowing down 
Operational changes-location of slowdown 

Kernel bandwidth 
Weight per Kernel Residual 

Acceptable Confidence Intervals 
Number of intervals to test for Chi-Square 

Number of tests performed per time for the cumulative sum 
Amount of "rebaselining" per test 

 
 
It must be assumed that:  
1) Each variable contributes in at least a linear fashion, 
2) Some variables contribute in nonlinear fashions, and 
3) Independence is not expected from any variables. 
 
Because the nonlinear nature of the interaction is unknown, this can be approximated 
by a series of exponentials or polynomials. For the sake of simplicity, this analysis will 
use polynomials. In this case, the final effect on the FAR, PND, and MBP are specific 
expressions of the generalized equation:  
 

   (8) 
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In Eq. 8, the each alpha is a determined coefficient of the factors, which are given by 
the various x.Determining the coefficients of the factors of the infinite sum is not feasible 
with modern computational methods as the amount of factors limit to infinity. The 
nonlinear character of the interaction makes standard regression analysis useless 
unless enough cases were run to isolate the interaction of each variable.  
 
Previous analysis using Markov Monte-Carlo evaluated the PND and FAR with a 
running time of roughly an hour per analysis. Each adjustment to each variable required 
an entirely new run. Under a broad assumption that each variable ten settings to 
explore the entire parameter space, the time required for a complete exploration is 10N 
hours.  
 
This can be accelerated by deconstructing the analysis into group families but the this 
can ultimately only reduce the amount of calculations to a loss of two degrees of 
freedom. While a reduction by two orders of magnitude may seem significant, this 
analytical method still cannot be pursued. The required time has led to the requirement 
of seeking secondary methods of evaluating the most relevant factors in the parameter 
space.  
 
2k Factorial Method 
 
A method developed for exploring extremely large parameter spaces in operations 
analysis is the 2k factorial analysis. In this analysis, an arbitrarily high and an arbitrarily 
low value is assigned for each one of the potential quantitative variables. Notes that 
some variables, such as diversion-type, are qualitative, and so a subset of qualitative 
variables must be chosen.  
 
This can reduce the number of independent tests to factors of two. There are several 
assumptions in this model, however: 
 
1) Each variable has only first order interaction with each other variable, 
2) Each variable has only first order impact into the final function, and  
3) Choice of "high" and "low" values are not the absolute limit and represent 
"appropriate" values for the quantitative measure.  
 
The third assumption is not difficult to overcome for most of the conditions listed. For 
example, p values for the statistical tests of the Chi-Square and the student's-t test are 
unlikely to 0.50, and much more likely to be appropriate in the standard tests of p=0.05 
or p=0.01. The first and second assumptions, however, are not appropriate for this 
model. It is reasonable to expect that a student's-t test on the residuals and a Chi-
Square test on the absolute variance are poorly estimated by a “high” and a “low” 
variable test set. These functions should have multi-order impact, and not even be 
linearly independent. As a result, the proposed approach of the 2k factorial method was 
not applied.  
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QUALITATIVE ANALYSIS OF SAFETY AND SECURITY FOR 
THE SAFEGUARDS ENVELOPE OPERATION 
 
SAFETY  
 
It was hypothesized that no significant safety effects would be found as a result of 
retaining part of the slurry mix in the G-105 tank for a long period of time. The G-105 
accountancy tank is one of the first tanks that all of the head-ends of the ICPP feed into. 
Because of the variability in the head-ends for the ICPP, different slurry mixes are to be 
expected to be fed into G-105. One of these head-ends is for handling zirconium clad 
fuels, and at the time this was done with hydroflouric acid, this is shown graphically 
below in Figure 2.  
 

 
 
 

Figure 2: HF is used as part of the Zirconium dissolution process.  
 
The second line appearing from the bottom of the figure is a second potential HF line 
from a different zirconium dissolver not using a coprocessing approach. In the event of 
a failure of the operator to clear the HF through the complexing tank in the coprocessing 
line, or a failure in the nitric acid complexing from the secondary line, G-105 would be 
flushed to remove the HF from the stainless steel in that tank. This flushdown would 
share very similar characteristics to the transient on which this analysis has focused.  
 
Slowing the speed of the flushdown from HF in the stainless steel tank would have 
significantly increased the fatigue on the stainless steel because of the additional 
corrosion. This optimization, therefore, may not address the most dangerous diversion 
pathway: claims of mistake/valve failure followed by flushdown in the accountancy tank.  
 
While it could be expected that this HF could be isolated in a nearby tank, the only tank 
available in this facility for storage from the G-105 tank is through the G-106 feed tank 
and then the G-108 rework tank. This is presented in Figure 3.  
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Figure 3: G-105 moves material through G-106, and then can be moved to the G-108 

tank, or optionally through the extraction column.  
 

A diversion over the transient of the fill for G-105 may not be able to even be tested with 
the G-106 tank if relief material (for neutralizing the HF) is added to G-106. Even if this 
is the case, the G-108 work tank is primarily for nitric acid, meaning the undue fatigue is 
to be expected. A rational actor, however, will likely maintain this error in the G-108 tank 
instead of contaminating and potentially destroying the extraction columns (tanks are 
less expensive than columns).  
 
Therefore, the safeguards envelope operation suggested may have induced undue 
fatigue in not just the tanks, but the connected pipes. This reinforces the issue with 
analysis of all the variables quantitatively in the previous sections with off-normal 
conditions of the facility. With a full scale simulator of a reprocessing facility, it may be 
possible to analyze these conditions. 
  
 
SECURITY  
 
Changes to location of material in a nuclear facility can have significant impact on the 
security of that material to non-state threats. Knowledgeable insiders and external 
attackers both benefit from material remaining in a vulnerable location for longer periods 
of time. The safeguards envelope that has been proposed for the ICPP in the head-end 
process around G-105 increases the overall wait time during the transient.  
 
Quantitative analysis of facility vulnerability that includes the length of time for 
vulnerability is rare and typically not applied in the DOE. Instead, since it is typically 
assumed that an attack will occur during the highest vulnerability (and therefore the 
window this remains open does not matter), the safeguards envelope that has been 
proposed would not indicate a higher level of vulnerability.  
 
Furthermore, the vulnerability must be considered in context to other vulnerabilities in 
the facility. The operational changes on the example G-105 tank increase the transient 
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time by thirty minutes, an inconsequential time compared to the historically long wait 
times of the material in other normal operations (these often exceed several hours 
based on the available data set). The amount of total increased vulnerability, from the 
qualitative argument presented here, is insignificant as well.  
Safeguards envelope operation combined with integration of process monitoring with 
safeguards systems could actually significantly increase the physical security of most 
locations in the facility. Assume a process monitoring alert (immediate) results in 
immediate heightened awareness of physical security systems. Ongoing research by 
Cipiti and Duran suggests that this would significantly increase adversary neutralization. 
As an example, assume the probability of detection by the immediate process 
monitoring methods triggers such a high alert. Process monitoring becomes a tri-use 
system because it supports operations, safeguards, and security collectively.  
 
If process monitoring and other real-time sensors can be integrated into the safety, 
security, and operational envelope, a set of new metrics could be created for balancing 
the effects of reliance on any type of system. Accountancy methods do not contribute to 
physical security, but if process monitoring can, a suboptimal combination of process 
monitoring and accountancy for safeguards may be preferred because it provides 
benefit to physical security.  
 

REMAINING CHALLENGES  
 

Time-correlation Correction on Existing Data 
 

An analysis of event beginning and ending in the existing data is crucial. Research by 
Burr had suggested that the start and stop of these events can have a significant impact 
on the uncertainty in a process monitoring system and this analysis has demonstrated 
that experimentally. Future analysis in this area must be able to correlate the start and 
stop of events accurately for the use of the optimization developed in FY10. 
Furthermore if this start and stop correlation can be combined with multi-tank analysis, it 
is possible that research associated with time-stamp events and propagation through 
complex systems could be applied, such work by Humberto, et al. 9 10 

 

Determining Equipment Failure Versus Diversion 
 

An alarm is raised because the plant begins operating outside the accepted parameters.  
However, the abnormality can be due to something as devious as material diversion, or 
as innocent as equipment failure.  Since equipment does wear out and eventually fail, it 
could affect the process monitoring system and its ability to detect diversions effectively, 
raising the FAR.  A code was developed in 1997 to address this specific problem, called 
IGENPRO, which was designed based on fuzzy logic and PM techniques.  IGENPRO 
attempted to effectively estimate when a component might fail within the plant, and 
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could be used to develop a more proactive maintenance schedule, rather than waiting 
until things failed completely.  This system or possibly a more advanced code could 
alleviate the issue of increased FAR due to equipment failure. 11 
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APPENDIX A 
 

Diversions of Significant Concern 
 

Statistically High Residual Diversion 

Problem 

Consider the case in which through random statistical fluctuations that the cumulative 
sums are unusually high. It is expected that during the lifetime of the facility that a 
deviation of four standard deviations. This represents an event that happens roughly 
one per forty-thousand measurements. In this case, the highly deviant event renders 
analysis of the cumulative residuals intrinsically flawed. While it may be possible to 
exclude highly anomalous events, if these events are not screened, the primary 
diversion-detection methodology will fail.  

Different from a safety envelope, in which nature obeys statistical independence 
between events, diversion detection must include dependent response actions taken by 
a potential diverter. In this hypothetical case, the diverter knows that the cumulative 
sums are unusually high and chooses to divert during this example transient. Diversion 
of 0.5% would be undetected because of the anomalous event.  

Solution 

Integration of the Chi-Square test, which adds all residuals positively, will trigger an 
event-of-interest if larger than the defined threshold value. Chi-Square thresholds are 
determined by the FAR (p-value) and the degrees of freedom. Unfortunately this means 
that a new optimization threshold must be determined, but the diversion can be 
detected through this method.  

 
Last Transient Point Diversion 

Problem 

Diversions from the last point in a transient are impossible to detect with a single tank 
analysis. The path between any given two points can be approximated with kernel 
regression or simply a line, but ultimately this estimation is only useful with regard to 
future points. In the data poor environment of a single point followed by zeros (such as 
at the end of a transient), there is no conclusion that can be drawn through level, 
temperature or density because all of these values are expected to go to zero.  

This diversion type could remove 0.5% of material in the example transient that is used 
in the Safeguards Envelope analysis. Inclusion of additional points reduces the 
differential amount of material removed at each step, which further reduces the amount 
of material that could be stolen from this example diversion.  
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This diversion is made even more complicated with replacement of the material with 
nitric acid at temperature. In this case, the diverter may hide the diversion in the 
systematic error between the tanks.  

Solution 

This diversion type is significantly mitigated by increasing the number of points between 
the penultimate point and zero. As a result, operations may be recommended to 
maintain a small amount of material in the tank rather than letting it drain immediately. 
From a statistical standpoint, however, the only way to detect this type of diversion is 
tank to tank correlations. This adds significant error because each residual of these 
correlations will now include systematic tank error. This can be compounded in the 
event of draining a tank into multiple secondary tanks but is ultimately a solvable 
problem. For the replacement scenario, multi-tank, multi-variable analysis is the only 
detection that can be used.  
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APPENDIX B 
 

Analysis of Safeguards Envelope 
 
Theory 

In reality, data always has noise, and due to this noise detecting small diversions is 
often difficult.  To an approximation, we can assume that all measurements take the 
following form: 
 
               ymeasured(t) = ytrue(t) + �calibration + �measurement                 (1a) 
 
where �calibration is the calibration error and �measurement is the measurement error.  
Calibration error is due to the non-perfect tuning of the measurement device and is 
usually a static additive error.  The error however is randomly distributed from one 
device to another.  The more familiar measurement error is that which arises from small 
fluctuations within the control volume (e.g. miniscule temperature fluctuations, or small 
movement) and is known to be normally distributed.  As Eq. (1a) shows, both errors 
mask what the true value actually is and can hamper any type of verification process.  
Indeed, both can also be averaged assuming enough data exists to do so.  
Unfortunately, that is not the case in most scenarios, including our ICPP data.  This is 
the realm in which statistical tests find their application as they look to the overall data 
trends to discover any abnormalities.  Before tests are created, diversion behavior must 
first be understood. 
 
Material diversions affect two components of measurement data: residual randomness 
and deviation from the mean or “expected” value.  A residual is defined as the 
difference between the measured value and the true value where ytrue(t) would be an 
exact analytical value. 
 
       yresidual(t) = ymeasured(t) – ytrue(t) = �calibration + �measurement                   (2a) 
 
As Eq. (2a) shows, a measurement residual should be nothing more than a time series 
of errors with a random distribution and mean of zero.  In a diversion case however, the 
residual would take on an entirely different behavior.  First, it is important to understand 
that abnormal data can be seen as normal data with an added deviation where 
diverted(t) is the nuclear quantity taken as a function of time as shown in Eq. (3a) 
below. 
 

    yabnormal(t) = ytrue(t) + �calibration + �measurement  - diverted(t)              (3a) 
 
If the residual of this curve was computed with respect to the true values of a normal 
curve, illustrated in Eq. (4a) below, then it becomes obvious that the residual of an 
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abnormal data curve is just a normal residual, such as Eq. (2a), but with an added non-
random and/or non-zero mean function. 
 
                 yabnormal(t) – ytrue(t) = �calibration + �measurement  - diverted(t)      (4a) 
 
In other words, to determine whether or not a tank has been tapped, one simply needs 
to look at the residual of its data; if the residual has neither a purely random distribution 
nor a zero mean, then assume that a diversion has taken place.  These tests can be 
performed with hypothesis Z-testing, standard deviation calculation, or cumulative sum 
examinations. 
 
Unfortunately, detection with the above methodology is difficult for two reasons: not 
knowing ytrue(t), and having sparse data.  Computing the most accurate residuals 
requires knowing before-hand what ytrue(t) is, which is technically impossible.  In fact, 
knowing it would imply perfect measurements and make this entire statistical process 
pointless.  However, what is known is the historical data, which tells what the 
measurement “ought” to be.  With that, it becomes feasible to make good 
approximations of ytrue(t), especially with good fitting techniques.  One must take 
caution, for approximations can be too uncertain if the base data is too sparse.  Even 
the tests themselves can be misleading if not enough information is present.  Again, 
advanced statistics become useful.  Numerous techniques have evolved which take 
advantage of sparse data and create reliable models to work with (e.g. Principle 
Component Analysis, Least-Squares Fit, Student’s T-testing).  With both reliable 
historical data and advanced statistics, it becomes very possible to distinguish abnormal 
behavior from normal operating conditions. 
 
Numerical theory aside, some important notes must be mentioned about the testing 
scenario.  The setting involves a reprocessing facility tank filling and flushing a 
(assumed) homogenous nuclear material solution.  Measurements of the solution’s 
level, density, and temperature (LDT) are taken every four minutes and assumed to 
have a form similar to that of Eq. (2), but with an assumed zero calibration error.  An 
artificial diversion is introduced in the same way as Eq. (4) and involves gradually taking 
0.5% of the tank (in terms of level) in a linear fashion until flushing is complete.  The 
exact start and stop times of the tank fill and flush is assumed known at all times. 
 
Methodology 

The basic premise of the algorithm is to take a trial data set and statistically compare it 
with a historical set by residual analysis.  Before beginning residual construction, the 
data must first be collected and processed in the appropriate manner.  A fully transient 
state was first isolated within the data logs and its LDT information was extracted into a 
data array with MATLAB.  Because the state-of-the-art measurement systems ICPP had 
at the time, there was very little error within the data itself.  Therefore, it was assumed 
that this information represented the “true” values, henceforth called the true curve, with 
which to build our simulated, noisier measurements. 
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The degree of fitting is also a user-set 
parameter, called the kernel bandwidth.  
Too low of a value connects the dots 
poorly, while one too high will “over fit” 
and produce large errors.  This is one of 
the parameters that can be optimized in 
the algorithm for best performance. 
 

0

0.5

1

1.5

2

2.5

-1 -0.5 0 0.5 1
Error [Tank level %]

Pr
ob

ab
ili

ty
 D

en
si

ty

 
                     
 
 

 
 
Once the three simulated curves were created, Kernel regression was performed on the 
historical set to later approximate residuals.  Kernel regression is a powerful state 
estimation technique designed to fit an approximate curve to noisy data.  Unlike most 
familiar regression techniques, kernel regression is non-parametric and does not 
actually make any initial assumptions about the shape of the curve.  Instead, it applies a 
Gaussian weight function centered at each data point and gives each neighboring point 
a contribution that is proportional to their distance. 
 

 
Figure 3.  Kernel Smoothing on fake historical  
data.  The example above is a noisy quadratic. 
 

In order to fully test the algorithm 
capabilities, a total of three curves were 
created: a historical curve, a normal trial 
curve, and a diversion trial curve.  The 
latter two were meant to test the FAR and 
PND respectively.  To build the “historical” 
curve, Gaussian noise with a standard 
deviation of 0.2% was added to the true 
set to simulate measurement error and 
labeled accordingly.  To create a normal 
trial curve, henceforth called the normal 
curve, true curve values were again taken 
and similar noise was added.  Creating the 
diversion trial curve, henceforth called the 
diversion curve, followed a similar process, 
but this time with a linearly increasing 
diversion function that peaked with a value 
of 0.5%. 

Figure 2.  Probability density of 
measurement error.  In this case, it is for the 

tank level. 
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Figure 4. Diagram showing residual analysis  
with historical data and diversion data. 
 
With the computed residuals, hypothesis Z-testing is then used to test for the criteria of 
randomness.  To be considered normal, the residuals must have a mean of zero and a 
standard deviation similar to that of the historical residual (historical data minus kernel 
smoothed data).  The resultant probability reveals how well the trial residual follows the 
stated constraints and can be compared to a threshold for judgment. 
 
In addition to the Z-test, a cumulative sum threshold test was also implemented in order 
to measure mean and deviation behaviors in a way that the Z-test does not. 
To this end, the residual vector components were each taken to the 1.5 power in order 
to better distinguish outliers (an L 1.5 norm).  Then, a summation of the residual was 
taken and compared to a threshold to determine abnormal trends.  Both these tests 
were used in OR fashion (if either test dismissed a case as a diversion, that result must 
be recorded). 
 

 
 

Figure 5. Flow-chart of the test priorities and the order in which they are executed, as well as 
how their results are interpreted. 

 
 
Once the kernel smoothed 
historical curve is obtained, the 
difference between that curve and 
the two trial curves (normal and 
diversion curve) give each trial 
curve their respective residual 
approximations.  This is done by 
simply subtracting the raw data 
from the kernel smoothed curve 
for both the historical and trial 
case. 
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Moving into the multi-variate tests, a difference residual comparison between, say, the 
level curve was compared against that of the density and temperature curves.  This was 
done by computing the residuals for each individual curve with the same methodology 
as the one-variable scenario, and then taking the residual difference between curves.  
This was done to compute an “effective” difference between the two curves in terms of a 
normal distribution.  Having these residuals, the same Z-test and cumulative sum 
threshold tests from before were used, but this time a stricter criterion was used to 
decide final judgment on a trial case.  Because multi-variate calculations add more 
noise than a single, both the comparison between, say, a trial level curve and a density 
curve as well as a temperature must agree in result (there must be a majority rule).  
This result then was also used in areas where the one-variable tests were unable to 
detect anything abnormal.  This way, the baseline PND could only be decreased at a 
cost of a small sacrifice of the FAR. A Chi-Square test was expected to replace the Z 
test for randomness, but the additional parameter could not be established. 
 
Finally a transient operated at half speed is simulated in order to grab more data points.  
This was primarily to show that with more data points, and assuming easy diversion 
detection at steady-states, the FAR and PND values can be markedly decreased and 
the MBP should increase.  To simulate half-speed at the transients, linear interpolation 
was done with the true curve between data points and applying the algorithm to the 
‘new’ data to obtain new FAR, PND, and MBP values. 
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